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REVIEW PAPER

Review of receptor modeling methods for source apportionment
Philip K. Hopke

Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York, USA

ABSTRACT
Efforts have been made to relate measured concentrations of airborne constituents to their
origins for more than 50 years. During this time interval, there have been developments in the
measurement technology to gather highly time-resolved, detailed chemical compositional data.
Similarly, the improvements in computers have permitted a parallel development of data analysis
tools that permit the extraction of information from these data. There is now a substantial
capability to provide useful insights into the sources of pollutants and their atmospheric proces-
sing that can help inform air quality management options. Efforts have been made to combine
receptor and chemical transport models to provide improved apportionments. Tools are available
to utilize limited numbers of known profiles with the ambient data to obtain more accurate
apportionments for targeted sources. In addition, tools are in place to allow more advanced
models to be fitted to the data based on conceptual models of the nature of the sources and the
sampling/analytical approach. Each of the approaches has its strengths and weaknesses. However,
the field as a whole suffers from a lack of measurements of source emission compositions. There
has not been an active effort to develop source profiles for stationary sources for a long time, and
with many significant sources built in developing countries, the lack of local profiles is a serious
problem in effective source apportionment. The field is now relatively mature in terms of its
methods and its ability to adapt to new measurement technologies, so that we can be assured of
a high likelihood of extracting the maximal information from the collected data.

Implications: Efforts have been made over the past 50 years to use air quality data to estimate
the influence of air pollution sources. These methods are now relatively mature and many are
readily accessible through publically available software. This review examines the development of
receptor models and the current state of the art in extracting source identification and apportion-
ments from ambient air quality data.
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Introduction

In the 1950s following the London fog episode on 1952
that resulted in thousands of premature deaths (UK
Ministry of Health [MOH], 1953, 1954, 1956; Bell
et al., 2004) and numerous smog episodes in southern
California (Haagen-Smit, 1954), serious efforts started
to be made to manage air quality. Part of the informa-
tion required to develop effective and efficient strate-
gies is a quantitative knowledge of what sources are
most important in contributing to the observed pollu-
tant concentrations. In general, much of the air quality
planning has been based on deterministic models of the
atmospheric system as embodied in chemical transport
models (CTMs) such as the Community Multi-scale Air
Quality (CMAQ) model (https://www.cmascenter.org/
cmaq) or Comprehensive Air Quality Model with
Extensions (CAMx) (http://www.camx.com/download/
default.aspx). These models combine estimates of

emissions, meteorology, and atmospheric chemistry
and physics into modeling systems that can be used
retrospectively or prospectively to estimate air quality
at various scales and time frames. These models require
considerable computational capabilities as well as input
data requirements. The estimates of time- and species-
resolved emissions are typically a major limitation, as
well as the need to simplify the large number of che-
mical species and reactions that actually occur in the
atmosphere down to a useful set of differential equa-
tions that can be solved in an acceptable run time. The
size and complexity of these models and their accuracy
have been improving as more information can be input
into them. However, there remain limitations to their
ability to provide fully accurate representations of the
variability of species and concentrations observed in the
atmosphere. Thus, alternative approaches that help
to understand the nature of the source/receptor
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relationships that exist in the air based on measurement
data can be essential to provide accurate assessments of
air quality problems and the most effective and efficient
approaches to improve air quality.

Colucci and Begeman (1965) in a paper in the
Journal of the Air Pollution Control Association were
the first to report the apportionment of pollutants
(polycyclic aromatic hydrocarbons, PAHs) to a specific
source type (automobile emissions) based on the con-
centrations of the co-emitted carbon monoxide (CO)
and lead. Blifford and Meeker (1967) used a principal
component analysis with several types of axis rotations
to examine particle composition data collected by the
National Air Sampling Network (NASN) during 1957–
1961 in 30 U.S. cities. Prinz and Stratmann (1968)
examined both the aromatic hydrocarbon content of
the air in 12 West German cities and data on the air
quality of Detroit, MI, using factor analysis methods. In
both cases, they found solutions that yielded readily
interpretable results.

The concept of an atmospheric mass balance model
was suggested independently by Miller et al. (1972) and
by Winchester and Nifong (1971). In these initial mod-
els, specific elements were associated with particular
source types to develop a mass balance for airborne
particles. Subsequently, more chemical species than
sources were used in an ordinary least-squares (OLS)
fit to provide estimates of the mass contributions of the
sources (Friedlander, 1973). Kowalczyk et al. (1978,
1982) recognized that since there were not equal errors
in all of the dependent variables, OLS was inappropri-
ate and an ordinary weighted least squares (OWLS) fit
was required to take the varying variances into account.
However, in 1979, both John Watson and Alan Dunker
independently recognized that the use of ordinary
regression analysis was incorrect because source pro-
files are measured with error. Thus, OWLS does not
take into account the errors in the independent vari-
ables. There are a number of ways to incorporate the
errors in the independent variables into the analysis
(Fuller, 1987). One approach, termed effective variance
least squares (EVLS) incorporates the measurement
error in the objective function to solve the chemical
mass balance (CMB) problem. The approach was
described by Watson et al. (1984) and was developed
into software provided to the receptor modeling com-
munity by the U.S. Environmental Protection Agency
(EPA) (Watson et al., 1991).

An alternative approach was developed from the
factor analysis methods applied earlier. Factor analysis
methods were reintroduced in the mid 1970s by Hopke
et al. (1976) and Gaarenstroom et al. (1977) in their
analyses of particle composition data from Boston, MA,

and Tucson, AZ, respectively. A problem with these
forms of factor analysis is that they do not permit
quantitative source apportionment of particle mass or
of specific elemental concentrations. To produce a
quantitative apportionment, target transformation fac-
tor analysis (TTFA) was adapted by Hopke et al. (1980)
from the work of Malinowski and coworkers (e.g.,
Weiner et al., 1970). A number of TTFA studies were
published in the 1980s and summarized by Hopke
(1988). Henry and coworkers (Henry and Kim, 1989;
Kim and Henry, 1999, 2000) have developed alternative
methods based on eigenvector methods.

The work up to 1990 served as the basis of current
receptor models. There have been several prior reviews
of these methods (Henry, 1997; Hopke, 2003, 2010;
Viana et al., 2008a; Belis et al., 2013). In this review,
the focus is on the applicability of these methods, the
current state of the art, and the prospects for future
developments that would permit better source appor-
tionments to be performed.

Improved measurement technologies

This review is focused on data analysis tools, but it is also
necessary to recognize that data analysis tools have no
value if there are no data to analyze or the data have little
information content. There had been networks collecting
particle samples in Class 1 visibility areas starting in 1977
using stacked filter samplers. In 1988, a major expansion
of this network was launched as the Interagency
Monitoring of Protected Visual Environments
(IMPROVE) network. The IMPROVE sampling system
recognized that it was necessary to use multiple filters to
provide a sufficient chemical characterization of most of
the collected particulate mass. A number of sites were
established with most of the sites located in national
parks and wilderness areas in the western United States.

With the promulgation of the 1997 PM2.5 National
Ambient Air Quality Standard (NAAQS), it was recog-
nized that the chemical characterization of ambient fine
particle aerosol in urban areas would provide critical
inputs into air quality management decisions. Thus,
starting in 2000, the Speciation Trends Network
(STN), now the Chemical Speciation Network (CSN),
was deployed also with the capability to collect multiple
filter samples that would then be analyzed for elements,
ions, and organic and elemental carbon. The initial
concept was to have around 50 trends sites across the
country committed to long-term data collection to
examine trends in the chemical species concentrations
as management activities went into effect. In addition,
state, local, and tribal agencies could add sites to sup-
port their individual planning processes. Additional
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IMPROVE sites were also deployed to provide better
coverage of rural areas in the central and eastern
United States. Thus, the capability to collect and ana-
lyze a large numbers of samples provided a large data-
base available for interpretation.

At the same time, new technologies were being devel-
oped that could sample and analyze particulate matter
(PM) in situ. Systems to measure organic and elemental
carbon, cations and anions, nitrate, sulfate, and elemen-
tal concentrations have been deployed to obtain semi-
continuous data. Many of these technologies were tested
as part of the EPA Supersite program (Solomon et al.,
2008), and some of them have been commercialized.

There is now an in-situ x-ray fluorescence spectro-
meter system (Cooper Environmental XACT 625
Ambient/Fence Line Metals Monitor) that can provide
automatic PM2.5 sampling and elemental analysis with
a time resolution of 1 to 2 hr. It has been evaluated by
the EPA (2012) and used by it in a field study in Ohio
(Caudill, 2012). The Ontario Ministry of the
Environment has been operating a unit in Toronto,
Canada, and the data have been used in a source
apportionment study (Sofowote et al., 2013).

Subsequently, in situ systems to sample and analyze
organic compounds associated with PM2.5 have also been
developed using a thermal desorption gas chromatogra-
phy/mass spectrometry (TAD) system (Williams et al.,
2006). Instruments such as the aerosol mass spectrometer
(AMS) have been developed (Canagaratna et al., 2007)
and the aerosol time-of-flight mass spectrometer
(ATOFMS) (Cai et al., 2015) has been developed, which
provide composition data even on individual particles.
These instruments also produce large, information-rich
data sets that can then be analyzed.

Although these instruments are not yet being deployed
in routine monitoring networks, the aerosol chemical
speciationmonitor, a simplified AMS, has been developed
to provide routine monitoring capabilities (Ng et al.,
2011). It has been deployed for periods of up to a year
(Minguollón et al., 2015), showing that such systems can
be used in a routine manner. There have also been devel-
opments for high-time-resolution organic compound
monitoring, which is also moving toward being suffi-
ciently routine that it could be deployed at sites where
chemical speciation would provide useful information on
particulate matter sources (Isaacman et al., 2014). Thus, it
can be anticipated that more time-resolved data will
become available in the near future.

Mass balance principle

The fundamental principle of receptor modeling is that
mass conservation can be assumed and a mass balance

analysis can be used to identify and apportion sources
of contaminants in the atmosphere. The approach to
obtaining a data set for receptor modeling is to deter-
mine a large number of chemical constituents such as
elemental concentrations in a number of samples.
Alternatively, methods like automated electron micro-
scopy or aerosol time-of-flight mass spectrometry can
be used to characterize the composition and size of
particles for a large number of particles. In either
case, a mass balance equation can be written to account
for all m chemical species in the n samples as contribu-
tions from p independent sources:

xij ¼
Xp
k¼1

gijfkj (1)

where xij is the j
th chemical species concentration mea-

sured in the ith sample, fkj is the concentration of the jth

species in material from the kth source, and gik is the
airborne contribution of material from the kth source
contributing to the ith sample. This basic conceptual
model can then be fitted to the various kinds of avail-
able data.

There exists a set of natural physical constraints on
the system that must be considered in developing any
model for identifying and apportioning the sources of
airborne particle mass (Henry, 1991). The fundamental,
natural physical constraints that must be obeyed are:

(1) The original data must be reproduced by the
model; the model must explain the
observations.

(2) The predicted source compositions must be
nonnegative; a source cannot have a negative
percentage of an element.

(3) The predicted source contributions to the aero-
sol must all be nonnegative; a source cannot
emit negative mass.

(4) The sum of the predicted chemical species
mass contributions for each source must be
less than or equal to total measured mass for
each element; the whole is greater than or equal
to the sum of its parts.

Equation 1 is solved differently depending on what a
priori information is available regarding the nature of
the sources and their chemical characteristics. If the
sources and their profiles are known, then the appro-
priate model is the chemical mass balance model.
However, if the number and nature of the sources are
unknown, then multivariate models such as Unmix or
positive matric factorization (PMF) can be applied.
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Chemical mass balance

Conceptual framework

With the source information known, the problem in eq
1 is solved on a sample-by-sample basis so the equation
is reduced to

xj ¼
Xp
k¼1

gkfkj þ eij (2)

where xj is the concentration of chemical species j
measured in the sample of interest, fkj is again the
concentration of chemical species j in material from
source k, gk is mass contribution of source k to the
sample of interest, and eij is the unmodeled portion of
the variation. As noted previously, the mathematical
solution for this problem is EVLS and has been avail-
able from the EPA in various forms for 25 years (EPA,
2004).

A compilation of measured volatile organic com-
pound (VOC) and particulate matter chemically spe-
ciated source profiles is also available from the EPA
in the SPECIATE data base (EPA, 2014a). However,
very few comparable data are available for other loca-
tions around the world. There have been some pro-
files developed in Europe, including for motor
vehicles (El Haddad et al., 2009), metal smelting (El
Haddad et al., 2011), metallurgical coke production
(El Haddad et al., 2011), and shipping/heavy fuel oil
combustion (El Haddad et al., 2011). Few or no
profiles have been measured in developing countries,
and there has been a tendency to apply U.S. profiles.
Although profiles can be selected to provide an
acceptable fit to the data, profiles that do not properly
reflect the actual compositions of the emissions can
lead to serious errors in the resulting source
apportionment.

Issues in applying the CMB model

The CMB model assumes that each measured profile
has a fixed composition that has been measured at the
source with some given measurement error. The EVLS
model requires an uncertainty estimate for each of the
ambient and source profile concentrations and propa-
gates those errors into an iterative solution that calcu-
lates the contribution values and their associated
uncertainties. However, several aspects of the data
used in this model have had only limited consideration
in CMB analyses.

For example, secondary inorganic species are typi-
cally modeled as pure ammonium sulfate and ammo-
nium nitrate. However, there is considerable evidence

that the acidic surface of acidic sulfate particles will
catalyze the formation of secondary organic aerosol
(SOA) (George et al., 2015). Thus, it could be antici-
pated that there would be organic carbon associated
with the secondary inorganic compounds through het-
erogeneous chemistry either on the surface of the par-
ticle or in cloud or fog water where the acidity catalyzed
the formation of lower volatility organic species that
remained with the inorganic material after the evapora-
tion of the liquid water (Blando and Turpin, 2000; Lim
et al., 2010). Thus, the gas-to-particle process can be
considered as a “source” that gives rise to both inor-
ganic and organic species in the particulate matter.

In one of the original formulations of the CMB
model (Miller et al., 1972), the mass balance equation
was written as

xj ¼
Xp
k¼1

αjgkfkj þ eij (3)

where aj is the coefficient of fractionation for species j
that indicates the amount of that species remaining in
the particulate matter after transport to the sampling
site. Although it was incorporated in the earliest for-
mulations of the CMB model and an approach to
estimating a was suggested by Friedlander (1981), it
has only been used in one study (Venkataraman and
Friedlander, 1994) because of the difficulty in estimat-
ing the differential reactivity of the various species in a
given profile. Thus, a has been universally assumed to
be unity.

Even for unreactive species measured in a source
profile, sources like a coal-fired power plant emit par-
ticles of varying composition depending on the nature
of the coal being consumed and the combustion con-
ditions. Different coals from different locations will
have different mineral species laid down with the car-
bonaceous material from which the coal has formed.
Thus, as a plant burns through a supply of coal, there
will be a variable input of the various mineral phases
(Roscoe et al., 1984).

Subramanian et al. (2006) showed that variability in
the diesel profiles creates uncertainty in the gasoline–
diesel split. They suggest an approach for developing
profiles and uncertainties from the ambient data and
demonstrate the range of results that are obtained from
applying different source profiles to the same ambient
data. Their work clearly shows the potential problems
of not having local profiles measured concurrently with
the ambient sampling campaign. However, many appli-
cations of CMB employ profiles from the literature to
analyze ambient data from different times and locations
than where the profiles were measured. Although good
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fits can be obtained by using a given set of source
profiles, this approach raises serious concerns regarding
the accuracy of the apportionment, and the error esti-
mates that do not include any effort to account for
profile variability lend a false sense of accuracy in this
approach.

Applications of the CMB model

The CMB model is most applicable to the apportion-
ment of primary pollutants. It has been used extensively
for the apportionment of PM10, particularly in the
western United States (Chow and Watson, 2002).
There has been very limited recent use of the CMB
model over the past 15 years. Its use in Europe has
been reviewed by Viana et al. (2008a) and Belis et al.
(2013) with recent applications to PM10 apportionment
by Andriani et al. (2011), AQUELLA (2007), Belis et al.
(2011), El Haddad et al. (2011), Junninen et al. (2009),
Larsen et al. (2008), Mossetti et al. (2005), Pandolfi
et al. (2008), Perrone et al. (2012), Viana et al.
(2008b), and Yin et al. (2010). In Asia, there have also
been a limited number of applications to airborne PM,
such as Begum et al. (2007), Gupta et al. (2007), and
Lin et al. (2010). Begum et al. (2007) describe an
approach to develop profiles from the ambient concen-
tration data.

Based on the initial work by Simoneit and coworkers
(Mazurek and Simoneit, 1984, Simoneit and Marzurek,
1981, 1982; Simoneit et al., 1980) on organic species in
the rural ambient aerosol, Cass and coworkers (Fine
et al., 2001, 2004; Hildemann et al., 1989, 1993, 1994,
1996; Mazurek, 2002, Mazurek et al., 1987, 1989, 1991,
1997; Rogge et al., 1991, 1993a, 1993b, 1993c, 1994,
1997a, 1997b, 1997c; Simoneit et al., 1993) developed
sampling and analysis methods for the urban carbonac-
eous fine particle aerosol that have now been used
extensively for apportioning primary organic carbon
(OC) contributions to ambient PM2.5 using specific
organic tracers known as molecular markers. Table 1
lists the compounds typically measured in these studies.
Kleindienst et al. (2007) has identified additional spe-
cies (Table 2) that can serve as markers of secondary
organic aerosol (SOA).

The CMB model was applied to OC in Los Angeles,
CA, PM2.5 samples by Schauer et al. (1996). A number
of other studies have been performed over the past two
decades using these profiles (e.g., Zheng et al., 2002,
2007). The database of source profiles has been aug-
mented primarily with additional motor vehicle profiles
generally measured using chassis dynamometers (e.g.,
Lough et al., 2007). Thus, an important question arises
as to the applicability of profiles measured in the early

Table 1. Commonly measured molecular marker species.

n-Alkanes
Aliphatic dicarboxylic

acids Hopanes and steranes

n-Pentacosane Propanedioic acid
(malonic) acid)

18α(H)22,29,30-
Trisnorneohopane

n-Hexacosane Butanedioic acid
(succinic) acid)

17α(H)-22,29,30-
Trisnorhopane

n-Heptacosane Methylsuccinic acid 17α(H),21β(H)-29-
Norhopane

n-Octacosane Pentanedioic acid
(glutaric) acid)

18α(H)-29-Norneohopane

n-Nonacosane Hydroxybutanedioic
acid (malic)

17α(H),21β(H)-Hopane

n-Triacontane Hexanedioic acid (adipic
acid)

22S,17α(H),21β(H)-30-
Homohopane

n-Hentriacontane Octanedioic acid
(suberic acid)

22R,17α(H),21β(H)-30-
Homohopane

n-Dotriacontane Nonanedioic acid
(azelaic acid)

22S,17α(H),21β(H)-30-
Bishomohopane

n-Alkanoic Acids 22R,17α(H),21β(H)-30-
Bishomohopane

n-Nonanoic acid Aromatic polycarboxylic
Acids

20R,5α(H),14β(H),17β(H)-
Cholestane

n-Decanoic acid 1,2-Benzenedicarboxylic
acid

20S,5α(H),14β(H),17β(H)-
Cholestane

n-Undecanoic
acid

1,3-Benzenedicarboxylic
acid

20R,5α(H),14α(H),17α(H)-
Cholestane

n-Dodecanoic
acid

αββ,20R,24S-
Methylcholestane

n-Tridecanoic
acid

Sterols αββ,20R,24R-
Ethylcholestane

n-Tetradecanoic
acid

Cholesterol ααα,20R,24R-
Ethylcholestane

n-Pentadecanoic
acid

β-Sitosterol

n-Hexadecenoic
acid

Stigmasterol Polycyclic aromatic
hydrocarbons

n-Heptadecanoic
acid

Phenathrene

n-Octadecanoic
acid

n-Alkanols Anthracene

n-Octadedenoic
acid

1-Hexacosanol 4-H-cyclopenta[def]
phenanthrene

n-Nonadecanoic
acid

1-Tetracosanol Fluoranthene

n-Eicosanoic acid 1-Octacosanol Pyrene
n-Heneicosanoic
acid

1-Triacontanol Benz[a]anthracene

n-Docosanoic
acid

Chrysene

n-Tricosanoic acid Sugars Triphenylene
n-Tetracosanoic
acid

Levoglucosan 1-Methylnaphthalene

n-Pentacosanoic
acid

Sucrose 2,6-Dimethylnaphthalene

n-Hexacosanoic
acid

Mannose 2-Methylanthracene

n-Heptacosanoic
acid

1,6-Anhydro-β-D-
Mannopyranose

1-Methylpyrene

n-Octacosanoic
acid

1,6-Anhydro-β-D-
Galactopyranose

3-Methylchrysene

n-Nonacosanoic
acid

glucose Retene

n-Triacontanoic
acid

D(+)-Xylose Benzo[b]fluoranthene

D(+)-Maltose Benzo[k]fluoranthene
Resin and
aromatic acids

D(+)-Trehalose (mycose) Benzo[e]pyrene

Abietic acid Benzo[a]pyrene
cis-Pinonic acid Aromatic ketones Indeno[1,2,3-cd]

fluoranthene
Vanillic acid 1,4-Naphthoquinone Indeno[1,2,3-cd]pyrene

Phenanthrenequinone Dibenz[a,h]+[a,c]
anthracene

1,2-Naphthoquinone Benzo[ghi]perylene
Anthraquinone Coronene
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1990s in Los Angeles to apportionment problems in
other areas of the United States and elsewhere in the
world.

There have been applications of the CMB model to
VOCs such as by Clarke et al. (2012) in which they
have apportioned the contributions of sources to the
odor perceived at a given site. The VOC sources were
identified as a waste treatment plant containing three
potential sources of olfactory annoyance (waste storage,
production of biogas, and compost piles of green
wastes). The olfactory response was measured with an
“electronic nose” and the source profiles were derived
from samples collected in the vicinity of the sources.
However, these authors concluded that the CMB model
applied to the electronic nose data did not produced
“convincing results” because they had relatively few
degrees of freedom between the number of e-nose
sensors (variables) and the number of sources.

Multivariate methods

Conceptual framework

The underlying model remains the mass balance out-
lined in eq 1. However, the number and nature of the
sources are unknown and have to be derived from the
ambient data. The class of multivariate methods to
solve this problem includes the self-modeling curve
resolution techniques (Hopke, 2015). The approach of
these methods can be visualized by looking at scatter
plots of two of the measured variables as shown in
Figure 1. The values shown are for samples collected
in Gates of the Arctic National Park as described by
Polissar et al. (1996). These plots illustrate the basis for
a geometrical interpretation of multivariate analysis
using “edges” as outlined by Henry (2003). In
Figure 1a, the values of Si and Fe lie along a single

line, suggesting that only one source contributes to
their concentrations, with the obvious source being
suspended soil. However, in Figures 1b and 1c, it can
be observed that there is a spread in the data with an
edge showing a source with high K and relatively low
Fe and Si. This source would likely be wildfires. There
is an edge near the K and Fe axes that is not denoted by
a line showing that there is some K in soil, but that
most of the K in the PM2.5 is contributed by the fires.
Thus, the points in the space between the edges show
samples that are a mixture of soil- and fire-derived
particles. In Figure 1d, two distinct sources can be
observed with very few samples representing mixtures
of the two. The high-S source represents long-range
transported particles coming from the then Soviet
Union during the late winter to early spring (Polissar
et al., 1996, 1998a, 1998b), while the fires occurred
mostly in the late spring and summer. Thus, these
two sources were relatively independent from one
another. Such separation is not common, but illustrates
how the source contributions can be separated graphi-
cally. In more complex systems, additional sources
could contribute those same chemical species and not
necessarily form an edge. To be separable from other
sources, there have to be points for which the contribu-
tions of a specific source are zero. If there are a suffi-
cient number of such points, the solution will be
unique (identifiable) (Anderson, 1984). However,
there are no published reports of such air quality data
sets having been identified.

Thus, the objective of the multivariate methods is to
estimate these variable relationships that define the
edges and then use them to apportion the quantity of
interest (e.g., PM mass, particle number concentration,
total VOC concentrations) to these identified source
types. It is up to the user of these techniques to put
labels on the profiles based on prior experience with
what is known about the nature of various kinds of
emission sources. As noted earlier, there is variation in
particle compositions or organic constituents (particle
or vapor), so these methods will identify the profiles of
the sources at the receptor site, whereas the CMB uses
the profiles measured at the source.

It is possible that there is sufficient atmospheric proces-
sing of the emissions that they produce data such as shown
in Figure 2. These data were produced by the analysis of
samples collected in Underhill, VT (Polissar et al., 2001a).
Two edges can be observed in this figure: one for winter
points and one for summer points. Both the Se and the
SO2 that is the precursor for the observed particulate S are
emitted primarily from coal-fired power plants. However,
differences in the rates of conversion of S(IV) to S(VI)
between summer and winter require two factors to fully

Table 2. Molecular marker compounds for secondary organic
aerosol.
Organic compound name Compound Precursor

MW hydrocarbon
2-Methylglyceric acid 134 Isoprene
2-Methylthreitol 136 Isoprene
2-Methylerythritol 136 Isoprene
3-Isopropylpentanedioic acid 174 α-Pinene
3-Acetylpentanedioic acid 174 α-Pinene
2-Hydroxy-4-isopropyladipic acid 204 α-Pinene
3-Acetyl hexanedioic acid 188 α-Pinene
3-Hydroxyglutaric acid 148 α-Pinene
2-Hydroxy-4,4-dimethylglutaric acid 176 α-Pinene
3-(2-Hydroxy-ethyl)-2,2-
dimethylcyclobutane- carboxylic acid

172 α-Pinene

Pinic acid 186 α-Pinene
Pinonic acid 184 α-Pinene
2,3-Dihydroxy-4-oxopentanoic acid 148 Toluene
β-Caryophyllinic acid 254 β-

Caryophyllen
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reproduce the observed concentrations and the sum of
their contributions being assigned as the coal-fired power
plant contributions to the measured PM2.5 mass.

Multivariate methods

Target transformation factor analysis
In the late 1970s, target transformation factor analysis
(Hopke, 1988) was developed to avoid the problems
associated with principal component analysis (PCA)
and other forms of factor analysis that center the data
before performing the analyses. PCA was rapid given

the computational power available, but only provided
qualitative information about the nature of the source
profile compositions and the relative importance of a
given source to the observed concentrations. It did not
provide a quantitative apportionment similar to that of
a CMB analysis. However, TTFA was capable of pro-
viding such a resolution. It was initially applied to a
number of data sets collected during the Regional Air
Pollution Study (RAPS) of the ambient aerosol in St.
Louis, MO, in the period of 1975 to 1977 and was used
for a limited number of studies. As new methods
became available, this approach has become obsolete.

Unmix
Henry and coworkers (Henry and Kim, 1989; Kim and
Henry, 1999, 2000) have developed alternative methods
based on eigenvector methods. The initial model was
SAFER, a geometrical approach to fitting nonnegative
source compositions and contributions, and has
evolved into Unmix (EPA, 2007). It is based on an
eigenvector decomposition of the ambient data as the
basis for defining the feasible region of the solution and
defining the edges (Henry, 2003). However, eigenvector
decompositions are not appropriate for heteroskedastic
data (Paatero and Tapper, 1993). It assumes that the
edges that are found represent the source profiles. The
uncertainties are then estimated based on a bootstrap-
ping approach (Effron and Tibshirani, 1993). However,
the edges are only the true source profile if there are
really zero source contribution samples in the data set.

Figure 1. Scatter plots of elemental concentrations or light absorbance measured in particle samples collected in Gates of the Arctic
National Park: (a) Fe vs. Si, (b) Fe vs. K, (c) Si vs. K, and (d) babs vs. S.

Figure 2. Plot of Se and S measured in PM2.5 samples collected
in Underhill, VT.
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For many sources, it is unlikely that the contribution
goes to zero or sufficiently low that it can be assumed
to be zero. For example, motor vehicle traffic rarely
disappears entirely. Similarly, long-range-transported
sulfate particles in the eastern United States are rarely
going to have low or zero values. They will have mini-
mum values, but that means that the edge is offset from
its true value and the contributions will not be accu-
rately estimated. This problem is termed rotational
ambiguity (Paatero et al., 2002; Paatero and Hopke,
2009). This problem is assumed to be solved by
Unmix, and thus, some of the uncertainties estimated
by Unmix are likely to be underestimated.

Unmix has been applied to a number of air quality
data sets, including airborne PM (Chen et al., 2002;
Lewis et al., 2003; Hu et al., 2006; Li et al., 2010;
Pancras et al., 2013), particle number size distribution
(Kim et al., 2004), and semivolatile compounds asso-
ciated with airborne PM (Miller et al., 2002; Hellén
et al., 2003; Mukerjee et al., 2008; Song et al.; 2008, Li
et al., 2011; Khairy and Lohmann, 2013; Patoskoski
et al., 2014). Until the most recent version (V6), there
were limitations to the number of factors that could be
extracted, and it often could not find a feasible solution.
Thus, it has experienced only limited applications.

As an example, Patokoski et al. (2014) applied
Unmix to VOC measurements made in Helsinki
and Hyytiälä, Finland. The VOCs were measured
with proton transfer reaction mass spectrometry
(PTR-MS), yielding data for methanol (M33), acetal-
dehyde (M45), acetone (M59), isoprene, methylbute-
nol (MBO) fragments and furan (M69),
methylvinylketone (MVK) or methacrolein (M71),
methyl ethyl ketone (MEK) (M73), benzene (M79),
methylbutenol (M87) toluene (M93), hexenal (M99),
hexanal and cis-3-hexenol (M101), and monoterpenes
(M137). In Hyytiälä, the measured trace gases (NOx,
CO, O3) and aerosol particle number concentrations
were also included in the analysis. Traffic and distant
sources were identified at both sites. The distant
source was characterized by more oxygenated com-
pounds. In Helsinki, additional single-species sources
of methanol and acetone were found in winter and
two biogenic sources were identified in spring. At the
rural site in Hyytiälä, there were also regional, accu-
mulation-mode-particle, and monoterpene sources.
At both sites, the anthropogenic sources contributed
more in winter when the mixing heights were
reduced and dilution was less. In addition to the
diurnal cycles of VOCs, the biogenic activity was
evident also in the source estimates in spring at
both sites. Furthermore, the regional VOC sources
were present continuously at Hyytiälä.

Positive matrix factorization
Positive matrix factorization (PMF) was developed by
Paatero (Paatero and Tapper, 1993, 1994; Paatero,
1997a) and has become the most widely used source
resolution method following its release by the U.S. EPA
(EPA, 2014b). The concept in this method is to utilize
an explicit least-squares formulation of the mass bal-
ance problem presented in eq 1. The eigenvector
approaches used in TTFA and Unmix represent an
implicit unweighted least-squares fit to the data
(Malinowski, 2002). Since environmental data do not
possess uniform uncertainties, the regression problem
should not be solved without proper weighting, but an
eigenvector approach only permits scaling by a row or a
column. Data points cannot be individually weighted
(Paatero and Tapper, 1993). PMF solves the receptor
modeling problem by minimizing a weighted objective
function given by

Q ¼
Xn
i¼1

Xm
j¼1

eij
sij

� �2

¼
Xn
i¼1

Xm
j¼1

xij �
Pp
k¼1

gikfkj

sij

2
6664

3
7775
2

(4)

where sij is an estimate of the uncertainty for the jth
species in the ith sample. This uncertainty is a combi-
nation of measurement error and the variability in the
source profile value. As discussed earlier, there is nat-
ural variability in the source profile values, given that it
is not a fundamental property of the activity in the
same way that a spectrum is a fundamental property
of a chemical compound.

PMF has been implemented in two algorithms.
Initially, PMF2 was developed (Paatero, 1997a) to pro-
vide rapid solution to the model presented in eq 1.
PMF2 was initially applied to data sets of major ion
compositions of daily precipitation samples collected
over a number of sites in Finland (Juntto and Paatero,
1994) and samples of bulk precipitation (Anttila et al.,
1995) in which they are able to obtain considerable
information on the sources of these ions. Polissar
et al. (1996) applied the PMF2 program to Arctic data
from seven National Park Service sites

in Alaska as a method to resolve the major source
contributions more quantitatively. Polissar et al.
(1998b) reanalyzed the Alaska data and proposed an
approach to uncertainty estimation that has now been
widely used in PMF applications. It should be noted
that the rules of thumb provided to estimate the uncer-
tainties were derived by extensive testing to find an
approach that provided useful results. It has no statis-
tical basis, and other approaches to error estimation
may provide superior results.
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In the late 1990s, a need was identified to be able to
solve more complex problems because not all mass
balance problems are represented by the bilinear
model in eq 1. For example, data obtained from a series
of samples collected with a cascade impactor as a func-
tion of time are a three-way data tensor (size, composi-
tion, time). Information is lost if the data are combined
to produce a matrix for analysis. Thus, a more flexible
solver was needed, and Paatero (1999) developed the
multilinear engine that can solve any problem that can
be expressed as a sum of product terms.

These two algorithms have a number of differences
in how the solutions are obtained. One of the most
important is the approaches to applying nonnegativity
constraints (Kim and Hopke, 2007). In PMF2, the
objective function in eq 4 is augmented with “penalty”
functions that increase as the solution values approach
zero (Paatero, 1997a). Alternatively, EPA PMF uses
traditional nonnegative least-squares constraints similar
to those described in Lawson and Hanson (1974) and
Wang and Hopke (1989). Therefore, the PMF2 nonne-
gativity constraints force solutions toward the center of
the feasible region of the solution and away from the
boundaries where factor values would approach zero.
However, the EPA PMF approach would permit any
factor value as long as it is nonnegative, and the solu-
tion space will be searched closer to the periphery of
the feasible region.

PMF has now become the most widely used recep-
tor model, with more than 1000 papers reporting its
application. It has been applied to apportionment of
airborne particulate matter (e.g., Polissar et al., 1996;
Polissar et al., 1998; Lee et al., 1999; Lee and Hopke,
2006; Lee et al., 2006; VanCuren and Gustin, 2015),
precipitation (e.g., Juntto and Paatero, 1994; Anttila
et al., 1995; Tiwari et al., 2015), VOCs (Zhao et al.,
2004; Kim et al., 2005), and Aerosol Mass
Spectrometry (Lanz et al., 2007; Aiken et al., 2008;
Ulbrich et al., 2009; Zhang et al., 2011) data with a
sharp rise in its use after the release of the EPA
version of PMF (EPA, 2014b).

The most recent release of EPA PMF (V5.0) incor-
porates substantially improved error estimation meth-
ods (Paatero et al., 2014) that attempt to estimate the
errors arising from the inherent uncertainties in the
measured data as well as the rotational ambiguity in
the solution. Brown et al. (2015) describe these meth-
ods and their application to presenting PMF solutions
for various kinds of environmental data.

Constrained models
As mentioned earlier, adding constraints to the least-
square fitting process can reduce the extent of rotational

ambiguity. With PMF being applied through the use of
the multilinear engine (Paatero, 1999), it is possible to
build constraints into the model, as was done in two
studies where there was an effort to separate multiple
sources of similar composition (Amato et al., 2009a;
Escrig et al., 2009). Amato et al. (2009a) applied the
multilinear engine to data from an urban background
site in Barcelona, Spain, to quantify the contribution of
road dust resuspension to PM10 and PM2.5 concentra-
tions. A recent emission profile of local resuspended
road dust had been previously obtained (Amato et al.,
2009b). This a priori information was introduced into
the model as auxiliary terms in the object function to be
minimized by the implementation of so-called “pulling
equations” (Paatero and Hopke, 2009).

Escrig et al. (2009) applied a similar approach to
speciated PM10 data obtained at three air quality mon-
itoring sites between 2002 and 2007 in a highly indus-
trialized area in Spain. The source apportionment of
PM in this area is an especially difficult task. There are
industrial mineral dust emissions that needed to be
separately quantified from the natural sources of
mineral PM. On the other hand, the diversity of indus-
trial processes in the area results in a puzzling indus-
trial emissions scenario. The availability of specific
source profiles for particular major industrial emissions
permitted the resolution of the industrial emissions
from other sources, providing an opportunity to quan-
titatively evaluate the effectiveness of abatement pro-
grams for regional air quality improvement.

Amato and Hopke (2012) have applied constraints
to combine the analysis of the three sites in the St.
Louis, MO, area into a single analysis such that
known source profiles could be worked into the analy-
sis. To obtain good target profiles for major sources
derived from data independent from the particle com-
position data collected at each of the three sites, addi-
tional high-time-resolution data collected as part of the
St. Louis–Midwest Supersite study was employed.
Applying PMF to these data permitted extraction of
profiles for the copper products plant, the zinc smelter,
and the steel mill factor. Average tailpipe emissions
profiles were taken from Schauer et al. (2006). These
profiles were taken as targets and introduced in the ME
continuation run with the aim of extending the number
of sources found. The results were substantially
improved over the original results (Lee et al., 2006;
Lee and Hopke, 2006).

Constraints have shown to be of sufficient value that
they have now been incorporated into the EPA version
of PMF in version 5.0.14 (EPA, 2014b). Using them
requires a multiple step analysis in which an initial
solution is obtained and then constraints applied to
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the continuation run. Details of how to perform such
analyses are provided in the user’s manual (EPA,
2014c). Sofowote et al. (2015a) described how to con-
struct constraints using available data. They analyzed
data from five sites across Ontario, Canada, assuming
that all of the sites would be affected by the same
distant sources via long-range transport. Eight factors
were found to be common across these sites. These
factors had profiles that varied greatly from one site
to the other, suggesting that the PMF solutions were
impacted by some rotational ambiguity. The features in
the EPA PMF V5 were used to impose mathematical
constraints that guided the factor solutions. These con-
straints reduce the rotational space. In situations where
major emissions sources are known and located in the
neighborhood of receptors, or emissions inventories
and literature source profiles exist, it is easy to use
these profiles to force the factor solutions to conform
to the expected signatures. In this case, reported source
profiles were neither available nor applicable due to the
large spatial span of potential sources and receptor
sites. This work described how such constraints can
be generated and used in these complex situations.
The constrained solution was then applied to provide
the source apportionments for the PM2.5 at each site
(Sofowote et al., 2015b). Thus, there are now tools
available where a priori information can be used in
EPA PMF to fit known sources and then be able to
derive the remaining source profiles to appropriately fit
the data.

Other complex models

An advantage of the explicit least-squares formulations
such as PMF is that conceptual models can be built and
tested based on the nature of the processes underlying
the creation of the data set. A number of such models
have been developed to maximize the information
recovery from the collected data sets.

Multiple sample type data
In many panel studies of the effects of airborne parti-
cles on health, measurements are made in multiple
environments. For example, Hopke et al. (2003) report
on the analysis of elderly subjects living in a single
multifamily residence. Measurements were made at a
central outdoor site, an unoccupied room in the build-
ing, and using personal samplers on specific indivi-
duals. Thus, different sources will affect different
sample types. Only “external” sources of ambient par-
ticles will affect the outdoor samples. However, ambient
particles will penetrate into indoor air and add to the
exposure observed in the indoor and personal samples.

Indoor sources such as cooking and the use of personal
care products will not affect the outdoor samples. The
expanded receptor model for this study can be
expressed as

xijdt ¼
XN
p¼1

gipdtfjp þ
XNþH

p¼Nþ1

gipdtfjp

t ¼ 1=2 : personal=indoorð Þ
(5)

xjdt ¼
XN
p¼1

gpdtfjp t ¼ 3 : outdoorð Þ (6)

where i is the individual (subject or participant) index, j
is the species index, d is the sampling date index, t is
the type index, N is the number of external sources, H
is the number of internal sources, xijdt denotes the
concentration of species j in the sample of type t col-
lected by subject i on date d, gipdt denotes the contribu-
tion of source p to the sample of type t collected by
subject i on date d, and fjp denotes the relative concen-
tration of species j in source p.

This model has been used to analyze data for cardiac
patients in the Raleigh–Chapel Hill area of North
Carolina (Zhao et al., 2006) and to analyze data for
asthmatic children attending a special school for mod-
erate to severe asthmatics in Denver, CO (Zhao et al.,
2007a). In the case of the Denver study, four external
sources and three internal sources were resolved from
the PM2.5 data for the three different environments.
Secondary nitrate and motor vehicle emissions were
the two largest external sources in this study. Cooking
was the largest internal source. A significant influence
of indoor tobacco smoking on daily personal exposures
to particles was observed for those houses in which
smokers reside and the environmental tobacco smoke
contribution correlated with urinary cotinine levels in
these urban schoolchildren. The influence of the high
traffic flow outside the school on the indoor air quality
was also observed.

Time synchronization model
One of the major developments in atmospheric mon-
itoring over the past 15 years has been the deployment
of more real-time and near-real-time instruments.
However, these instruments collect data at different
frequencies ranging from a few minutes to a few
hours. Higher frequency data have the advantage that
transient events can be observed that can often provide
edge points that would otherwise be averaged out of a
longer interval sample (Lioy et al., 1989). Thus, it is not
desirable to average the higher frequency data to the
longer time interval instrument data in the suite of
data. There is no way to split the longer integration
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time data down to the shorter time intervals, so it is
necessary to have models that permit each set of data to
be included within its own measurement frequency.
Such models have been applied to several of the sets
of data from the EPA Supersite program. Zhou et al.
(2004a) analyzed data from Pittsburgh, PA, while
Ogulei et al. (2005) used the same model for data
from Baltimore, MD. The model has been examined
further using simulated data (Liao et al., 2013) and it
was found that the model performed well. It has also
been applied to provide VOC and PM2.5 source appor-
tionments that then were used to apportion risk in the
exposed populations (Liao et al., 2015).

Multiway data

The vast majority of applications of PMF are to
matrices that provide information on chemical proper-
ties of a series of samples. However, there is also the
potential for data with increased dimensionality. For
example, if particles are segregated by aerodynamic
diameter into multiple samples collected during a
given time interval that are then analyzed for their
chemical composition, the data set is then a three-way
array or tensor consisting of size, composition, and
time period. Data for a single variable like PM2.5 mass
concentrations could be collected from multiple sites
across an area so that the three ways would be latitude,
longitude, and concentration. If those samples were
then analyzed for composition, there would then be a
four-way array. Various such applications of PMF have
been made and demonstrate how conceptual models
can be built to fit the data, rather than all data being
fitted to the same bilinear model.

Spatially distributed data
Paatero et al. (2003) examined a spatial data set of
PM2.5 mass concentrations measured every third day
at more than 300 locations in the eastern United
States during 2000. The basic PMF model was
enhanced by modeling the dependence of PM2.5 con-
centrations on temperature, humidity, pressure, ozone
concentrations, and wind velocity vectors. The model
comprises 12 general factors, augmented by 5 urban-
only factors intended to represent excess concentra-
tion present in urban locations only. The flux density
maps showed the major transport patterns of PM2.5.
For example, they show the increase in particle mass
as the air moves from the regions of the gaseous
precursor (SO2), and the SO2 is converted into sul-
fate. Recognition of this combination of transport and
transformation is necessary in order that control

procedures can be targeted to significant causes of
high PM2.5 concentrations.

A different spatial model was developed by Chuienta
et al. (2004) for the analysis of the spatial patterns and
possible sources affecting haze and its visual effects in
the southwestern United States. The data are from the
Measurement of Haze and Visual Effects (MOHAVE)
project and were collected during the late winter and
midsummer of 1992 at the monitoring sites in four
states (i.e., California, Arizona, Nevada, and Utah).
The resulting three-way data array was analyzed by a
four-product-term model. This study makes a direct
effort to include wind patterns as a component in the
model in order to obtain the information of the spatial
patterns of source contributions. The solution is com-
puted using the conjugate gradient algorithm with
applied nonnegativity constraints. For the winter data
set, reasonable solutions contained six sources and six
wind patterns. The analysis of summer data required
seven sources and seven wind patterns.

Size–composition–time data
There are a number of devices that can separate parti-
cles by size such that samples can be collected that
represent a relatively limited particle size range. The
most common of these systems is a cascade impactor,
in which particles are sequentially separated and col-
lected for analysis. Most of these systems are manually
operated, so there is considerable effort involved in
collecting a series of samples. However, there have
been several systems developed for collecting a time
series of time- and size-resolved samples that can then
be analyzed. One of these systems is the rotating
DRUM impactor sampler (Raabe et al., 1988) that col-
lects the particles on Mylar films placed on a rotating
drum under the nozzle that determines the aerody-
namic behavior of the particles. The resulting samples
can be analyzed using synchrotron XRF (Knochel,
1989) to provide the three-way data set.

Different sources have different size-composition
profiles in their emissions (Dodd et al., 1991). Thus, a
source profile for size segregated data is a matrix of
composition as a function of size, and therefore, a
special model is required to properly account for the
processes by which the particles are formed and
emitted into the atmosphere. The main equation of
the model is as follows:

~X ¼ A�~Bþ~E (7)

where ~XðI; J;KÞ is the three-way array of observed data,
� represents a Kroneker product (Burdick, 1995;

Kiers, 2000) of the source profile array ~BðI; J;KÞ with
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the contribution matrix, A(I,P), P is the number of

factors, and ~EðI; J;KÞ is the three-way array of
residuals.

This model has been applied to several data sets,
including three-stage DRUM impactor data from
Detroit, MI, with the samples collected between
February and April 2002 (Pere-Trepat et al., 2007), and
eight-stage DRUM impactor data from the
Washington–Dulles International Airport (Li et al.,
2013). For the Detroit data (Pere-Trepat et al., 2007),
nine factors were identified: road salt, industrial (Fe +
Zn), cloud-processed sulfate, two types of metal works,
road dust, local sulfate source, sulfur with dust, and
homogeneously formed sulfate. Road salt had high con-
centrations of Na and Cl. Mixed industrial emissions are
characterized by Fe and Zn. The cloud-processed sulfate
had a high concentration of S in the intermediate size
mode. The first metal works was represented by Fe in all
three size modes and by Zn, Ti, Cu, and Mn. The second
included a high concentration of small-size particle sul-
fur with intermediate-size Fe, Zn, Al, Si, and Ca. Road
dust contained Na, Al, Si, S, K, and Fe in the large size
mode. The local and homogeneous sulfate factors show
high concentrations of S in the smallest size mode, but
different time-series behavior in their contributions.
Sulfur with dust is characterized by S and a mix of Na,
Mg, Al, Si, K, Ca, Ti, and Fe from the medium and large
size modes. The analysis utilized light absorption mea-
surements at 4 wavelengths, 350, 450, 550, and 650 nm,
to provide limited information on the carbonaceous
components in the samples.

At Dulles International Airport, five major emission
sources—soil, road salt, aircraft landings, transported sec-
ondary sulfate, and local sulfate/construction—were iden-
tified (Li et al., 2013). Aircraft landing was notable, for it
had not previously been identified as a significant source
of PM2.5. Its pattern showed small particles of sulfur, zinc,
bromine, zirconium, and molybdenum. This factor is
assigned to particles that are emitted during landings.
The sulfur and zinc come from tire wear. These elements
are key constituents in tires. Often a visible puff of smoke
is observed at touchdown. There is considerable frictional
heat produced at this instant and particles are generated
across the particle size range. Both zirconium and molyb-
denum are used in high-temperature greases such as
might be used to lubricate bearings that would undergo
significant heat stress. The energy deposited in the bear-
ings can be expected to liberate particles from the lubri-
cants. The study showed that time- and size-resolved
DRUM data can assist in the identification of the airport
emission sources and atmospheric processes leading to
the observed ambient concentrations.

Ensemble methods

It is possible to integrate the results of chemical transport
models with receptor models. These approaches have
been termed ensemble methods. Lee et al. (2009) first
introduced this approach in which multiple receptor
modeling approaches were used for PM apportionment
in conjunction with a short-term application of CMAQ
for Atlanta, GA. A normal CMB, one using molecular
markers, and the Lipschitz global optimizer (LGO)
approach with gaseous data were used to obtain three
sets of apportionments. A PMF analysis was also per-
formed on daily 24-hr integrated sample composition
data from the Jefferson Street site in Atlanta. CMAQ
results were available for several limited time periods
(July 2001 and January 2002). Nine pollutant sources
were identified. Weighted-average source contributions
were obtained for each source on each day from the
multiple receptor and CTM solutions. These source con-
tributions were then combined with the ambient data in a
CMB–LGO analysis to obtain a new set of ensemble-
based source profiles. These profiles were then applied
to the ambient data in a final CMB–LGO analysis to
obtain their final source apportionments. They felt that
the resulting apportionment better reflected the likely
source contributions than any of the individual method
results. Balachandran et al. (2012) further analyzed these
results and provided a method uncertainty analysis.
Maier et al. (2013) applied the approach to East St.
Louis, IL, based on the results of the analysis of daily
PM2.5 samples collected at the St. Louis–Midwest
Supersite.

Balachandran et al. (2013) then extended the approach
by using a Bayesian ensemble average of the multiple
source apportionments to produce source profile distri-
butions. Source profiles sampled from these distributions
were then used in a final CMB analysis to produce the
final results. They report that the results of this approach
provide a better representation of some sources particu-
larly biomass burning because of improved correlations
of the source contributions with the traditional markers
of biomass combustion (levoglucosan and potassium).

Methods using local wind data

Conditional probability function (CPF)

To analyze point-source impacts from various wind
directions, the conditional probability function (CPF)
(Kim et al., 2003) was calculated using source contribu-
tion estimates coupled with wind direction values mea-
sured on site. To minimize the effect of atmospheric
dilution, daily fractional mass contribution from each
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source relative to the total of all sources was used,
rather than using the absolute source contributions.
The same daily fractional contribution was assigned to
each 3-hr period of a given day to match to the 3-hr
average wind direction. Specifically, the CPF is
defined as

CPFΔθ ¼ mΔθ

nΔθ
(8)

where mΔθ is the number of occurrences from wind
sector Δθ that exceeded the threshold criterion, and nΔθ
is the total number of data from the same wind sector.
The threshold is set to a relatively high percentile value
in the distribution of fractional contributions from a
given source. The sources are likely to be located to the
directions that have high conditional probability values.

Nonparametric regression

Nonparametric regression (NPR) (Härdle, 1990) is a
regression model without parameters since it estimates
the expected value of concentration given wind direc-
tion. To find the directions of peaks in the ambient
concentrations, Henry et al. (2002) suggested NPR
using a Gaussian kernel as a nonsubjective alternative
to the usual bar chart method that is highly dependent
on the location and size of Δθ. NPR produces statistical
confidence intervals as well as estimates of the location
of peaks, and is able to separate closely located peaks.
NPR was applied to the hourly measured cyclohexane
data from two sites in Houston, TX. The triangulation
of the peak directions estimated from two sites cor-
rectly pointed to the source (Henry et al., 2002; Yu
et al., 2004; Kim and Hopke, 2004).

Nonparametric wind regression (NWR)

Henry et al. (2009) enhanced NPR by adding regression
for wind speed as well as wind direction. For wind
speed, the Epanechnikov kernel function is employed.
It has been applied by Henry et al. (2009) to SO2 data
from East St. Louis, IL. Olson et al. (2011) applied
nonparametric wind regression (NWR) to the concen-
trations of 13 organic source markers (10 polycyclic
aromatic hydrocarbons and 3 hopanes) measured in
time-integrated samples (24-hr and subdaily) collected
near a highway in Las Vegas, NV. Cheng et al. (2014)
applied NWR to estimate the impact of oil and natural
gas exploration and production activities on local air
quality in Pennsylvania’s Allegheny National Forest.
They found effects on the local concentrations of NOx

and SO2, as well as potential impacts on regional air
quality.

Sustained wind incidence method

A further development was reported by Vedantham
et al. (2012) in which the wind direction standard
deviation is incorporated into the model, resulting
in a reduction of the effect of data collected during
highly unstable meteorological periods with large
wind directional changes. Vedantham et al. (2012)
applied the sustained wind incidence method
(SWIM) to black carbon (BC) data to estimate the
impact of the traffic due to expansion of a major
highway in Las Vegas, NV. Data were collected both
before and after the expanded lanes were open for use
and the analysis showed a substantial increase in BC
on the expanded highway section. Vette et al. (2013)
also examined BC data, but in Detroit, MI, to appor-
tion the BC contributions from various wind direc-
tions as part of a study looking at exposure of
asthmatic children to diesel traffic.

Of these methods, CPF has been most widely used
because it can be easily calculated using a spreadsheet
while the other approaches require access to a program
to do the fitting. Although some of the papers indicate
the availability of the software that implements the
nonparametric methods, the programs are not generally
available.

Methods incorporating back trajectories

The dispersion models describe the transport of the
particles from a source to the sampling location.
However, using an analogous model of atmospheric
transport, it is possible to calculate the position of the
air being sampled backward in time from the receptor
site from various starting times throughout the sam-
pling interval. The trajectories are then used in resi-
dence time analysis (RTA), areas of influence analysis
(AIA), quantitative bias trajectory analysis (QTBA),
potential source contribution function (PSCF), and
residence time weighted concentrations (RTWC).
AIA, QTBA, and RTWC have only been used in a
single publication for each method, and those results
are reviewed by Seigneur et al. (1997). PSCF and sim-
plified QTBA have been primarily used in recent pub-
lished studies.

Potential source contribution function (PSCF)

The potential source contribution function (PSCF)
receptor model was originally developed by Ashbaugh
et al. (1985). It has been applied in a series of studies
over a variety of geographical scales (Cheng et al.,
1993a, 1993b; Gao et al., 1993, 1994, 1996). Air parcel
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back trajectories ending at a receptor site are repre-
sented by segment endpoints. Each endpoint has two
coordinates (e.g. latitude, longitude) representing the
central location of an air parcel at a particular time.
To calculate the PSCF, the whole geographic region
covered by the trajectories is divided into an array of
grid cells whose size is dependent on the geographical
scale of the problem so that the PSCF will be a function
of locations as defined by the cell indices i and j.

Air parcel backward trajectories were related to the
composition of collected material by matching the time
of arrival of each trajectory at the receptor site. The
movement of an air parcel is described as series of
segment end points defined by their latitude and long-
itude. PSCF values for each grid cell were calculated by
counting the trajectory segment endpoints that termi-
nate within the grid cells. The number of endpoints
that fall in the ijth cell is nði; jÞ. The number of end-
points for the same cell when the corresponding sam-
ples show concentrations higher than an arbitrarily
criterion value is defined to be mði; jÞ. The PSCF
value for the ijth cell is defined as

PSCFði; jÞ ¼ mði; jÞ=nði; jÞ (9)

In the PSCF analysis, it is likely that the small values
of nij produce high PSCF values with high uncertain-
ties. In order to minimize this artifact, an empirical
weight function W (nij) proposed by Zeng and Hopke
(1989) is commonly applied when the number of the
endpoints for a particular cell was less than about three
times the average values of the endpoints per cell.

Although the trajectory segment endpoints are sub-
ject to uncertainty, a sufficient number of endpoints
should provide accurate estimates of the source loca-
tions if the location errors are random and not sys-
tematic. Cells containing emission sources would be
identified with conditional probabilities close to 1 if
trajectories that have crossed the cells effectively trans-
port the emitted contaminant to the receptor site. The
PSCF model thus provides a means to map the source
potentials of geographical areas. It does not apportion
the contribution of the identified source area to the
measured receptor data.

Xie et al. (1999) used PSCF to examine the locations
of the sources identified by the PMF analysis of the data
from Alert. The results of these analyses were in agree-
ment with earlier efforts that examined the PSCF maps
for the individual chemical constituents in the particle
samples. Poissant (1999) used PSCF to examine the
likely source locations for total gaseous mercury
observed in the St Lawrence River valley. During the
winter, fall, and spring period the distribution of poten-
tial sources reasonably reproduces the North American

Hg emission inventory. However, because a single fixed
criterion was over the entire year and transport from
many of the strong source areas was weak during the
summer months, few source areas were observed dur-
ing the summer data where the concentrations were the
lowest. Polissar et al. (2001b) examined the particle
data (black carbon, light scattering, and condensation
nuclei counts) collected at Point Barrow, AK. They
found that they could distinguish between biogenic
sources of the small particles seen only with the con-
densation nuclei counter and anthropogenic larger par-
ticles that scatter and absorb light. The biogenic
particles came primarily from the open areas of the
North Pacific Ocean, whereas most of the anthropo-
genic particles came from known industrialized areas of
Russia.

PSCF has been evaluated in the same applications
involving large-scale wildfires where the origin of the
smoke particles was well known. Cheng and Lin (2001)
examined smoke from a large fire in Central America.
Begum et al. (2005) used the transport of a fire plume
from Quebec, Canada, to Philadelphia, PA, to test the
approach. In both cases, there was excellent agreement
between the identified areas of high probably and the
actual locations of the fires.

Software to prepare PSCF maps are now readily
available. TrajStat (Wang et al., 2009) is available at
http://www.meteothinker.com/products/trajstat_fea
tures.html. Another implementation is in MetCor and
is described in Sofowote et al. (2010a, 2010b) (http://
www.chemistry.mcmaster.ca/faculty/mccarry/MC_
downloads.html).

Simplified quantitative trajectory bias analysis
(SQTBA)

Quantitative trajectory bias analysis (QTBA) was devel-
oped by Keeler (1987) as a multiple-site approach to be
able to better identify source regions for measured
downwind high concentrations. It was applied to data
collected at a number of sites in the northeastern
United States (Keeler and Samson, 1989). However, it
is very difficult to implement, and thus, the full
approach has not been applied elsewhere. It is possible
to use the basic framework but simplify the analysis
such that it becomes a practical approach to apply
(Zhou et al., 2004b; Brook et al., 2004).

The probability of a tracer arriving at a point (x, y) at
time t is given as

Aðx; tÞ ¼
ðt
t�τ

ð1
�1

ð1
�1

Qðx; y; tjx0; y0; t0Þdx0dy0dt0 (10)
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where Q(x, y, t|x’, y,’, t’) is the transition probability
density function of an air parcel located at (x’, y’) and
time t’ arriving at the receptor site (x, y) at time t.

The transition probability Q is assumed to be
approximately normally distributed about the trajectory
with a standard deviation that increases linearly with
time upwind:

Qðx; y; tjx0; y0; t0Þ ¼
1

2πσxσy
exp � 1

2
X � x0ðt0Þ

σx

� �2

þ Y � y0ðt0Þ
σy

� �2
 !" #

(11)

where (X, Y) is the coordinate of the grid center and
x’(t’) and y,’(t ’) are the coordinates of the center line of
the trajectory. The σx and σy are approximated by

σxðt0Þ ¼ σyðt0Þ ¼ at0 (12)

with a dispersion speed, a, equal to 5.4 km/hr (Samson,
1980). The potential mass-transfer field for a given
trajectory, �Tk x; y; tjx0; y0; t0ð Þ, was integrated over the
upwind period, τ, of each trajectory to produce a two-
dimensional probability of natural transport field.

�Tk x; yjx0; y0ð Þ ¼

ðt
t�τ

Q x; y; tjx0; y0; t0ð Þ dt0ðt
t�τ

dt0
(`13)

The resulting natural transport potential field,
�Tk x; y; tjx0; y0; t0ð Þ, for trajectory k, was weighted by
the corresponding concentration, χk(x,y), yielding a
concentration-weighted mass transfer potential field:

�Tðxjx0Þ ¼
XK
k¼1

Tkðxjx0ÞχkðxÞ (14)

This definition of the weighted potential field is
different from the definition given in Keeler (1987)
since it is not divided by the sum of concentrations.
Thus, the weighted potential field in eq (17) has the
dimension of concentrations.

In PSCF, when cells are crossed by small number of
trajectories, false source areas may be found if some of
the trajectories also pass real source areas. This problem
was solved by Cheng et al. (1993a, 1993b) by down-
weighting the PSCF values. This “tailing effect” (Cheng
and Lin, 2001) problem also exists for SQTBA and
RTWC. To solve this problem, the SQTBA field was
down-weighted empirically by the following method.

A coefficient cr is defined:

cr ¼ 10K

2π at0ð Þ2 (15)

where K is total number of trajectories and t0 is the
length of the longest trajectory. The final SQTBA field
is obtained by dividing the concentration-weighted
field by unweighted field:

SQTBAðxjx0Þ ¼
~Tðxjx0ÞP

k ¼ 1K �Tkðxjx0Þ

1� exp �
PK

k¼1
�Tkðxjx0Þ
cr

 ! ! (16)

The weighted field has the dimensions of concentra-
tions and the unweighted natural field is dimensionless
so the final SQTBA field has the dimensions of con-
centrations. This approach has been used in several
studies (Zhou et al., 2004b; Brook et al., 2004; Zhao
et al., 2007b).

Future directions

We now have fairly sophisticated data analysis tools
like PMF with good uncertainty estimation methods.
These methods have been made readily available to the
atmospheric community. We have a suite of methods
to utilize external information, such as local meteorol-
ogy and longer range Lagrangian trajectories. Thus,
what new methods can be anticipated in the future?

There is increasing interest in Bayesian methods and
there has been some initial work in this direction (e.g.,
Park et al., 2014; Hackstadt and Peng, 2014). However,
the conceptual framework and the statistical computa-
tions are more complex so that it is difficult for inves-
tigators to get started using this approach. In addition,
there remain considerable questions about how the
prior distributions are developed and the sensitivity of
the resulting apportionments to those priors. Do the
priors adequately address both the measurement uncer-
tainties in the ambient data and the variability in the
source profiles? Additional work is required to better
understand the place of Bayesian approaches in recep-
tor modeling.

As has been shown by a number of studies using high-
time-resolution data (e.g., Ogulei et al., 2005, Sofowote
et al., 2013), it is possible to obtain improved resolution
of sources by obtaining more edge points because of the
separation of sources driven by changing wind directions
and differences in operating schedules. Semicontinuous
sampling systems like the rotating drum impactor also
provide time-resolved data that can be combined with
semicontinuous in situ instruments such as an aethal-
ometer and/or a field organic/elemental carbon analyzer
to open additional opportunities for improved source
identification and separation. More extensive data on
time resolved organic compounds will also become
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more readily available. Thus, we can anticipate larger,
richer data sets that will permit better resolution of the
sources and hence increased accuracy in the resulting
contributions that can then better inform the develop-
ment of air quality control strategies.

Conclusions

There are now a number of mature mathematical data
analysis methods that can be applied to concentration
data to estimate source apportionments. The methods
are generally available in relatively easy-to-use formats,
and that has led to a rapid expansion of their applica-
tion to a variety of data types. There are now capabil-
ities of combining data from multiple sites or building
specific conceptual data models that can be fitted to
specific types of available data. There are thus greatly
improved tools available for use, and their application
to specific air quality problems should help to provide
additional insights into the source/receptor relation-
ships that can then guide the development of more
effective air quality management strategies.
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